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Future robotic manipulators carried by a spacecraft will be required to perform complex
tasks in space, like repairing satellites. Such applications of robotic manipulators will encounter
s number of kinematic, dynamic and control problems due to the dynamic coupling between

the manipulators and the spacecraft. This-paper-presente a new “:{M‘—QMMML“M“ y
for studying the kinematics and dynamics of manipulators in space./The problem is treated by -/ - ’77, c
L SR

introducing the concept of a Virtual Manipulator (VM). The kinematic and dynamic motions of / -
the manipulator, vehicle and payload, can be described relatively easily in terms of the Virtual
Manipulator movements, which have a fixed base in inertial space at a point called a Virtual
Ground. It is anticipated that the approach described inthis.papes.will aid in the design and

development of future space manipulator systems. e

“2. Introduction

Robotic manipulators are potentially very useful for performing complex tasks in non-industrial hostile environ-
ments [1,2], such as in space. A number of studies have considered the potential applications of manipulators ia
space and the capabilities that these systems must have to achieve anticipated mission goals [3-5|. These applications
include tasks such as repairing, servicing and constructing space stations in orbit. Currently, these tasks can only
be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for EVA would obviously reduce
hazards to the astronauts and mission costs.

Unfortunately, the use of manipulators in space is complicated by the manipulator/spacecraft dynamic coupling.
For example, movements of a manipulator will disturb the attitude of the spacecraft carrying it. This coupling
will adversely affect the manipulator’s precision, and reduce the on orbit life of the system by consuming excessive
attitude control fuel. Also, any motions of the spacecraft, say due to the firing of attitute control jets, will disturb
the manipulator. Therefore, new manipulator concepts, designs and control techniques will be required to minimize
and compensate for the manipulator/spacecraft dynamic coupling.

Researchers working on the control of space manipulators have focused their attention on issues such as sen-
sor reqirements, path planning algorithms, teleoperator control [6-8|; the problems of vehicle/manipulator dynamic
interactions remain unresolved.

This paper presents a new and effective analytical modeling method for studying the kinematics and dynamics of
manipulators in space. The problem is treated by introducing the concepts of a Virtual Ground (VG) and Virtual
Manipulator (VM). As discussed below the VG is located at the center of mass of the manipulator/spacecraft, -, stem,
and the VM is an ideal kinematic chain connecting the VG to any point on the real manipulator. Motions of a
system, including a vehicle, manipulator and payload can be described easily by the VM. This model has proven to
be effective in calculating the kinematic and dynamic properties of the system; such as its inverse kinematic solution
and workspaces. This paper shows that the VM approach can also be used 4o plan the manipulator’s motions in
order to minimize the degrading consequences of the manipulator/spacecraft dynamic interactions.

3. A Model of Manipulators in Space

Future space manipulator systems will have one or more mechanical arms carried by a vehicle, as shown in
Figure 1. The vehicle will be capable of motion in six degrees of freedom, and will have reaction jets for position and
attitude control. Although manipulators could be driven by photovoltaicly powered electric actuators, which use no
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where N
Mo = Z M, (2
9=l
Since there are no external forces, the VG is stationary in the frame N and the vector V, is always constant.

In the following development the VM properties such as link dimensions and joint axes, for initial manipulator
configuration are described. Then the rules for its joint movements as a function of the real manipulator joint
movements are presented. Referring to Figure 3, which shows the end effector VM for the manipulator shown in
Figure 2, the i*» link of the Virtual Manipulator is defined by the vector V;,

Vi = D
V: = Hi+D;
Vv = Hy_1+Dy 3)
where )
Di =R My/Mio (f=1,2,..,N) (4)
and . "=l
Hi =LY M,/Mu (i=12,..,.N=1) (5)

=1
The first VM link represents the vehicle's orientation. This link is attached io the VG by a spherical joint and
its motion is equal to the three vehicle rotations with respect to inertial space. The end of the Virtual Manipulator
terminates at the end effector, defined by a vector E, fixed in the N** VM link.

The i** VM joint is taken as a revolute or a prismatic joint depending upon whether the i** joint of the real
manipulator is revolute or prismatic. The axis of rotation for a revolute VM joint, %, is parallel to the axis of the real
manipulator joint A;. Similarly, the translational axes of prismatic VM joints are parallel to the corresponding axes
of the real manipulator prismatic joints. Equations (1) through (5) define the VM and its position corresponding to
the initial position of the system, as shown in Figure 2. The VM links will all be parallel to the real manipulator
links in cases where all the centers of mass {or all manipulator links lie on a line connecting the manipulator joints
on the corresponding link.

The VM will move as the joints of the real manipulator move. The angular rotations of the VM revolute joints, from
their initial position, are equal to the angular rotations of the corresponding revolute jointa for the real manipulator.
The prismatic virtual joint translations are ratios of the corresponding real prismatic joint translations. For an end
effector VM, translation of the virtual joint, P;, is given by:

J
P;=T; ) M,/ M (6)
q=1
For the VM in its position of construction, its initial position, the values of T, are taken as zero, Hence the initial
magnitudes of P; are zero. The prismatic joint motions, T;, are referenced to the initial position.

If a VM that is constructed according to Equations (1) through (5), moves with the real manipulator according
to the above description, and its link shapes and lengths remain constant as the manipulator moves, then it can be
shown (see Appendix A) that:

1 The axis of the s** virtual joint is always parallel to the i** axis of the real system joint, and

2 The Virtual Manipulator cnd point will always coincide with the real manipulator’s end effector.

These properties enable the kinematic and dynamic motions of a free-floating manipulator system to be described
by the motions of a much simpler Virtual Manipulator which has a fixed base in inertial space. The properties of the
VM remain the same as long as the mass property of the system does not change. For example, when the manipulator
grasps a free-floating pay load, the VM changes. According to Equations (1) through (5), the VM link lengths will
be reduced for the addition of a payload. Virtual Manipulators constructed for points other than the end effector
have different links than the links defined in Equation (1); and their joint movements maybe different than the ones
described above, for example, prismatic joint translations may be the vector (P, - T;), depending upon location of
the point used to construct the VM [9].
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reaction fuel, manipulator motions could disturb a vehicle's poeition and sttitude and result in the consumption of
excessive amounts of attitude fuel. The useful life of spacecraft systema is often limited by the amount of reaction

jet fuel they can carry. ¢

Two approaches to solve this problem are: 1) permit the vehicle to move and compensate for the base motions in
the manipulator task planning; and 2) plan the manipulator motions so that they do not cause the vehicle to move
excessively. The first of these approaches requires the ability to perform inverse kinematic and workspace calculations
for a free-floating system [10]. The second requires methods for planning manipulator motions that would self-correct
the vehicle's orientation with little or no reaction jet adjustments. These approaches and associsted issues are
addressed here through the Virtual Manipulator technique. Assumed in this work is that the external forces/torques
acting on the system are negligible, and that the system is free Aoating. Also assumed is that the system elements
may be modeled as rigid bodies. The later assumption may not be valid if 8 manipulstor must perform high speed
motions.

4. Analytical Development of the Virtual Manipulator

The Virtual Manipulator (VM) is a massless kinematic chain terminating at an arbitrary point on the real
manipulator. Its base is the Virtual Ground (VG), which is an imaginary fixed point in inertial space. It is proven
below that for a given system the properties of the VM and location of the VG are fixed. VMs exist for many
different manipulator structures, such as open or closed chains, single or many branch arms, revolute or prismatic
joints [8-11]. The discussion in this paper will be limited to manipulators composed of spatial serial chains with
revolute or prismatic connections. Although VMs exist for any point on the real manipulator, this paper deals with
VMs whose end points coincide with the real manipulator end effector. .

The VG is defined to be the center of mass of the manipulator system. From elementry mechanics, when there
are no external forces, such as from reaction jets, the VG will be fixed in an inertial space. It will not move due to
any internal forces of the system such as joint torques, or due to any manipulator motions.

Figure 2 shows a schematic drawing of an N body spatial manipulator system. The first body in the chain
represents the vehicle which carries the manipulator. The N** body is a combination of tLe payload and the last
link. The i** joint is called J;, and C; is the center of mass of the i** body. The vectors R; and L; connect C; to
J; and J; to C,,, respectively. The vector Ry connects Cy to the end effector. The vectors R; and L;_, are fixed
relative to the i** link, and hence the angle between these vectors is constant for all system configurations. If the i**
manipulator joint is a revolute joint, the vector defining the axis of rotation of J; is called A,, and the angle 8; is the
rotation of the i** joint. If the i** manipulator joint is a prismatic joint, the vector T, is defined to be the translation
along the translational axis. If the i** joint is revolute, then the magnitude T; is equal to zero.

Figure 1: A Space Manipulator System.
y

Figure 2: N Body System in Space.

The location of the VG for this system in inertial space, the center of mass of the system, can be found by knowing
some initial position of the system. The vector S(0) defines the initial known location of the end effector with respect
to an inertial reference frame N. Then the location of the VG, the vector V,, can be obtained from conservation of
linear momentum by:

N i-1
V= 2[S(0) - 3°(R, + L + T,)|Mi/Muos (1)

1=1 1=1
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Real
Manipulator

Pigure 3: N Body System and its VM. Figure 4: ‘:. '13';:‘ Body Planar System and
] .

Table 1 gives the properties of a very simple planar manipulator and its Virtual Manipulator, shown in Figure 4.
It should be remembered that the method is not restricted to planar systems.

5. Applications of Virtual Manipulators

The Virtual Manipulator approasch has a number of poesible applications. VMs can be used to simplily the
inverse kinematics of spsce manipulators, calculate their workspaces, plan their motions and formulate the equations
of motion {9-11]. It should be noted that using conventional methods, these problems are far more difficult for space
manipulators than for industrial manipulators with fixed bases. In the sections below, the use of the VM is shown
for workspace analysis and path planning.

A. Workspace Analysis

Since the vehicle and manipulatordynamics are coupled, the manipulator’s motions will cause the vehicle to move
and this in turn makes it difficult to find the manipulator workspace. In fact several different types of workspaces
exist. In this section, a workspace called the constrained workspace, for a manipulator in spsce is defined, for a more
complete discussion of space manipulator workspaces refer to references [9,10]. For the constrained workspace it is
assumed that the attitude, but not the location, of the vehicle is controlled. This can be achieved without the use of
attitude control fuel by employing reaction wheels, or by using the self correcting maneuvers discussed later in this

paper.

To find the constrained workspace, a Virtual Manipulator is constructed to the end effector of the real manipu-
lator. The joint limits of the real manipulator are transformed into VM joint limits. The workspace of the Virtual
Manipulator is then found using conventional workspace analysis methods [12|. The real manipulator workspace will
be equal to the VM workspace because of the following reasons. The VM end point coincides with the real manip-
ulator end effector, and it is assumed that it is possible to control the orientation of the first VM link, representing
the vehicle, with respect to inertial space. The other joints are controlled with their actuators. This workspace will
always be a spherical shell, assuming there are no limits on the vehicle orientations. Figure 5 shows the constrained
wotkspace for the simple two link manipulator shown in Figure 4, it was found using its VM.

B. Path Planning

In certain cases, the magnitude of the rotations of the vehicle caused by the manipulator’s motion may not be
acceptable. For example, vehicle rotations may cause communication devices to loose their signals. Vehicle rotations
can be controlled using reaction wheels or reaction jets. However, these devices have the disadvantages of increased
mechanical complexity and aystem weight or increased consumption of attitude control fuel.

It is shown below that the manipulator itself can be moved in such s way as to have the end effector follow a
nominal specified path and yet have a prescribed vehicle orientation, with specified limits, without using attitude
control fuel or requiring reaction wheels.
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Table 1: Characteristics of Planar Manipulator

and ita VM.
Body M R L o) H
no (Xg) {m) (m) (m) {(m)
1 50 1.0 1.0 0.33 0.33
2 50 0.7% 0.7% 0.5 0.8
3 50 0.5 - 0.5 -

Pigure 5: Constrained Workspace of Manipulator
Shown in Figure 4.

To find this motion the principle of conservation of angular momentum is applied to the system. For an n degrees
of freedom space maanipulator the following equation can be writter.

X = F(0,X)8, ™
F: 3 by n matrix with elements F; ;,

X: 3 by 1 vector of vehicle inertial orientations with elements, X;,

© : n by 1 vector of joint angles with elements #;

In general, Equation (7) is non-integratable, that is:

X, ax,

30,30, © 39,0, (®)

Therefore, the final vehicle orientation depends on path taken by the manipulator from one position to another. It
follows that the final vehicle orientation will change if the manipulstor moves along one path in joint space and
returns to its initial position by snother path. This is & similar notion to the one which permits astronauts to reorient
their bodies by moving their limbse {13]. This leads to a strategy for adjusting or correcting motions of the vehicle's
orientation. In this strategy nominal trajectories are selected for the end effector and vehicle orientation. Then the
joint motions are executed assuming the vehicle {ollows its trajectory. If at any point the vehicle orientation deviates
from its desired path by more than a specific amount, a series of small cyclic motions, selected to correct for the
vehicle orientation are added to the joint motions.

To find the cyclical joint motions that achieve the desired vehicle/base orientation corrections, it is assumed that
these motions are small enough that the end effector deviates only by a small amount from ite nominal trajectory.
This small motion assumption permits the use of a nonlinear system model in which nonlinearities of order greater
than 2 can be neglected.

First, let X be a set of Euler angles defining the base orientation with respect to an inertial coordinate frame.
The initial and desired final base orientations are X, and X, respectively. The desired change in the Euler angles is
defined by

X=X, -X, {9)

Let ©¢ be the vector defining the initial and final joint positions at the beginning and end of the correction
maneuver. Also let the vectors §V and § W define small joint movements. The closed correction path is constructed
by having the manipulator move along the straight lines, in joint space defined by vectors §V and §W shown in
Figure 6.

For small §V and §W the following equation can be obtained from Equation (7).

5§ Xy = }:Z[Z(”‘ aF"‘r) a;: aF"]aswxsv (k=1,2,3) (10)

=] j=1 m=1
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where §.X;, 5V; and 5W; are elements of the vectors §X, §V and §W, respectively. In the case of s three DOF spatial
manipulator, Equation (10) wiil yield three equations with six unknowns. Three additional constrain equations are
required to solve for §V and §W.

If vectors §V and §W are parallel, the cyclic motion will not produce any vehicle rotation. Therefore it is assumed

that these vectors are perpendicular:
5VT.§W =0. (11)

Further, the magnitudes of W and §V are assumed to be equal: ,
§VT .6V = §WT . §W, (12)
and one of the elements of §V is chosen to be a linear combination of the other two. For example,

§Vy = (§V3 + §V4)/2 . (13)

Equations (10) through (13) yield six scalar equations with six scalar unknowns, which can be solved for the

desired joint trajectories, §V and §W. If the required correction, §X, is large, the values of §V and 5W may violate

the small joint motion assumption. In this case the desired correction can be achieved by a series of m cyclical

correction maneuvers. It is shown below that at each cycle Equationa (10) through (13) do not have to be resolved
and the final position can be achieved.

Referring to Figure 7, T(X;) is a 3 by 3 matrix which transforms a vector expressed in vehicle body coordinates
(x,y,2) into inertial or Newtonian coordinates { Ng,N,,N,), when the body is at jth orientation. The transformation
matrix for the initial vehicle orientation is T(X,). The transformation matrix for the desired vehicle position to be
achieved after m cycles is T(X ). After one correction cycle, the transformation matrix is T(X, + éx), where,

T(X, + 6x) = T(X()A, (14)

and the matrix A is the transformation matrix from the vehicle position, one cycle from the initial vehicle position,
back to the initial position. The A matrix will not change with each cycle because the total system, vehicle and
manipulator, have been subject only to a rigid body rotation in inertial space. Hence after m cycles the transformation
matrix from the desired system position to inertial coordinates is simply:

T(Xq) = T(X)A™ (1)

Equation (15) can be solved for A:
A =PAY/mp-! (16)

where A is a diagonal matrix of the eigenvalues of T(X,) ! T(X,) and P is a matrix of corresponding eigenvectors.

Using the A matrix obtained from Equation (16), the change in Euler angles (5x) are calculated from Equa-
tion (14). Then the joint correction motions for each cycle, §V and §W, are obtained by solving Equations (10)
through (13). The manipulator should go through the derived joint transformations (§V, §W ) m times to approach
the desired vehicle orientation. However, the final vehicle orientation after m cycles will usually be slightly differeat
than the desired orientation because of the neglected higher order nonlinearities. In order to achieve the desired
vehicle orientation more precisely, the over all correction may need to be broken into several smaller corrections and
the process repeated with a slightly different set of §V and §W for each subcorrection.

AM-‘ z
4% v sw T )
r
Starting @
Point
- 3w 7 Desired
-8V onentason
inertial Coordinate Frame (N)
[ q
Figure 6: A Closed Path Correction in Joint Space Figure 7: Vehicle Coordinate Rotation Due to Cyclic
for a Vehicle Rotation. Manipulator Motion.
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The above technique is now demonstrated for a spatial 3 DOF space manipulator shown in Figure 8. The
properties of the manipulator are given in Table 2. It is desired to rotate the vehicle from its initial orientation to
its Anal orientation as shown in Table 3. In this example, it was necessary to solve for the joint trajectories (§V and
§W) 3 times to precisely obtain the desired vehicle orientation. The joint trajectories for thess 3 cycle sets are shown
in Pigures 9 through 11. Each cycle is repeated 30 times to achieve the desired vehicle orientation. Table 3 shows the
system angles after each cycle set. During each cycle the vehicle cscillates in sympathy to the manipulator’s motion,
see Figure 12. However the mean orientation of the vehicle changes continuously and reaches Xy at the same time
the jointe return to their initial positions. Figure 13 shows the mean vehicle orientation during the joint cycles. The
vehicle movements during the joint motions are + 0.1 radisns from their mean trajectory. Here one can clearly see
change in the base orientation as the manipulator joints cycle through their motion.

1.00

)
; 1 L N Y Y r
A e - ! !
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. I L L d | 2 ' -~
-——_— ! } ~
0.75 T . |
- o |
] | N
' I 0
!o.so : |- |,
1 ! l - :.
| ! i
0.25 I | | 4
[ . :
i i |
—a ——4——uv——-r—~-.tv—-j——.m—-
09900 0.5 0.5 0® 1.00

Pigure 8: Spatial 3 DOF Space Manipulator. = (

Pigure 9: Joint Angle Trajectories for Firast Set
of Cycles.

1.2% T

l

%-%.0 0.5 0.5 0.3

Cycie Length (nondimensional)

Pigure 10: Joint Angle Trajectories for Second
Set of Cycles.

1.00

%-%%.00

9.5 2.5 0.3
Cycle Length (nondimensionad)
Pigure 11: Joint Angle Trajectories for third

Set of Cycles.

1.00

Table 3: Manipulator Angles at Different Instances.

Angles | initial | desired After one After second Finad

{ cycle sot Cycle set position
X1 $0. 4S8, 447 45.0 45.0
Xz 40. 4S8, 43.9 450 430
x3 3s. 3s. 7.1 RN ) 35.0
. 48, 48, 48, 48, 48.0
.2 45 45. 45, 48, 450
03 45. 45, 45, 48. 430

Table 2: Three DOF Manipulator Characteristics.

Body no.| Mass | R in local L in local inertia about_pnn.
(k@) | coord. (m) coord. (m) ang (Kg-m <)

1 20. 11 +1) +Xx{ 011+ 05] | 051,05}.05k

2 7. 0.5l 0.5! 051 .05]) .0.5k

k] 7. 0.5} «0.3% | 0.5 +0.1% 0S8i.0.1] .05k

4 5. - . 051,0.1) . 0.5k
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0.5 | 1 0.6 PO
%-%%.00 .55 9.0 0.7 1.00 9-5%.00 0.5 0.5 0.7 1.00
) One Cycle Set (noncimensionai) . Correction .cvdo {noncimensional) '
Figure 12: The X; Vehicle Coordinate for the Figure 13: g:‘“ V.ehlccl; El“l" Angles During
First Set of Cycles. rrection Cycle.

6. Summary and Conclusion

In this paper, the concepts of Virtual Manipulators and Virtual Grounds are discussed. The end effector YM
characteristics and proof of its properties for serial link with revolute and prismatic joints were presented, and some
of ite applications were discussed. This is a new concept and further research is required to demonstrate its full

capabilities.
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Appendix A: Proof of Virtual Manipulator Properties

First it will be proven that for ® VM constructed using the rules presented in section 4 of this paper the VM end
point will coincide with the end effector. Then it will be proven that when the manipulator goes through » movement
the VM joint motions described in section 4 will keep the VM end point on the end effector.

First, recognizing that the system center of mass is stationary in the inertial frame N, V, remains stationary in
this frame and referring to Figure 2 yields:

N-1
MV, = MNS+Mn_1[S = Ly-y - Ty - Ry_y]+ ...+ My[S - z (Li + T: + R))] (A1)
=1
Recall that if the i} joint is revolute T; = O, otherwise, its magnitude is equal to the prismatic joint translations
from the initial manipulator configuration and its direction is along the tzanslational axis. Equation (Al) can be
solved for S(t) as follows,

M+ M+...+ My,

v (Rv-1+Twn-1+Ln-y) (A2)
tot

M,
S(¢)=V,+—M-'—(R,+T|+L,)+...+
tot

Equation (A2) can be written in terms of the vectors D;, H; and P; by using Equations (4) through (8), to yield:
S(t)=V,+(D1+H; +P1)+...+ (Dny-1 +Hy_1 + Pn_y) (A3)
Using Equation set (3) and the fact that the end effector position is always equal to S(t) + Ry gives:
E)=V,+Vi+P+...+Pn_1+ VN (A4)

It should be noted that this equation does not depend upon the existance of te Virtual Manipulator. The vector
chain represented by Equation (A4) describes the end effector position relative to the N reference frame for all time.

For the initial manipulator position the VM constucted according to the procedure outlined in section 4 has an
end point described by the following vector chain,

Vo+Vi+...+Vy (AS5)
Comparing Equations (A4) and (A35) it follows that in the initial position, when the P;’s are equal to zero, the end
effector coincides with tlie VM end point.

Now it will be proven that as the real manipulator moves the VM joint motions described in section 4 will keep
the VM er‘nd point on the real end effector. Say the manipulator goes through some joint movement, from section 4,
the following vector chain describes the VM end point, where the P;’s are no longer zero,

Vo, +Vi+Pi+...+Py_ +Vy (A6)

In the following paragraphs it will be proven that the vectors V?, V; and P; in Equation (A6) are the same as V,,
V, and P, in Equation (A4), respectively, therefore, the VM end pomt wili comcxde with the real end effector. The
vect.or V, is always constant, therefore,

V.=V, (A7)
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The initial real manipulator links are composed of vectors L;_; + R; and since the manipulator links are rigid, the
magnitude of the vectors L;_; and R; and the angles between them are always constant. Since the magnitudes of
L;_1 and R, are constant, then from Equations (4) and (5) the magnitudes of H;_, and D; will also be constants. It
can also be seen that the angles between H;_; and D; are constant. Then

Vil = [Hi-y + Dy| Ve,i (A8)

The Virtual Manipulator links are composed of the V; vectors. These links don’t change their shapes and lengths
as & function of time and since magnitudes of V; are initially equal to magnitudes of V,, and magnitudes of V; do
not change with time it follows that:

Vil = Hi.1 + D] = [ Vil vt i (A9)

The magnitude of the vectors P; in Equation (A4) and the P; vectors in Equation (A6) are both obtained from
the real manipulator prismatic joint translations, using Equation (6), therefore by definition,

P3| =[P e, i (A10)
Now it will be proven that the direction of the vectors V; and P; in Equation (A6) are parallel to vectors V; and
P, in Equation (A4}, respectively.

First it can be established that the rotations of the first VM link are set equal to the vehicle rotations and hence
the first VM link will always be parallel to the vehicle. Therefore,

V=V, vt (A11)

Since axis of rotation or translation of the first real and virtual joints are fixed relative to their corresponding first
links, and the rotations of the first VM link is the same as the vehicle, and these axes are initially constructed to be
parallel, then they will always be parallel.

Now consider the case when the first real manipulator joint is revolute. The elements of the second VM link H}
and D3 will be parailel to L; and R3 and in turn the vectors V3 and V; will be parallel and

Vi=V, vt (A12)

because the rotational axis of the first VM and real manipulator joints are parallel, as shown above, and the magnitude
of their rotations are equal by construction.

In the cases where the first joint is prismatic, the elements of the second VM link H} and D; will be parallel to
L, and R; and in turn the vectors V3 and V; will be parallel and

Vi=V; vt (A13)
because the VM and real manipulator translational axis for this joint are parallel. In the same manner it is possible

to show that
V=YV, vt, ¢ (Al4)

Also, in a similar manner all the translational axis of the real manipulator and the VM are always parallel, and from

ion (A11),
Equation {A1}) P; = P; Ve, i (A15)

Substituting Equations (A15), (A14) and (A7) into (A6), and comparing the result with Equation (A4) shows that
the end effector will always coincide with the VM end point, and this completes the proof.
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